
               IJESM            Volume 2, Issue 1             ISSN: 2320-0294 
_________________________________________________________         

 A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Engineering, Science and Mathematics 
 http://www.ijmra.us                                             

 162 

March 
2013 

 

EFFECT OF SUCTION / INJECTION ON AN 

OSCILLATORY MHD FLOW IN A ROTATING 

HORIZONTAL POROUS CHANNEL  

                                                      

R.N.BARIK

 

 

ABSTRACT: 

An analysis is made to study the effects of injection / suction on an oscillatory flow of an 

incompressible electrically conducting viscous fluid in a porous channel filled with a porous 

material. The porous channel with constant injection / suction rotates about an axis perpendicular 

to the plates. A uniform magnetic field is applied normally to the plates. The upper plate is 

allowed to oscillate in its own plane whereas the lower plate is kept at rest. Effects of typical 

results are illustrated to reveal the tendency of the solutions. Representative results are presented 

for resultant velocities, phase angles and amplitude and phase difference of shear stress.  
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1. INTRODUCTION:  

           Unsteady flow problems have wide applications in various technological fields like 

aeronautics, astrophysics, space science and chemical engineering. Unsteady flows through 

porous media have been extensively studied because of their various applications in science and 

engineering. An extensive overview on this topic has been documented in the books of Nield and 

Bejan [1] and Pop and Ingham [2]. Some remarkable investigations on flows of viscous fluid 

through porous media are reported by Postelnicu et al. [3] and Mahapatra et al. [4]. 

Hydromagnetic flows through porous media have gained considerable importance because of 

wide ranging applications. Various aspects of this type of problem under different physical 

situations have been reported by Dash [5], Israel-Cookey [6], Dash et al. [7], Hassanien and 

Obied Allah [8] and Panda et al. [9]. Moreover, several authors [10-15] studied the fluid flows in 

rotating systems.  

              The objective of the present work is to study the hydromagnetic oscillatory flow in a 

horizontal porous channel filled with a porous material in a rotating system.  
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2. MATHEMATICAL ANALYSIS:  

              An oscillatory flow of a viscous incompressible and electrically conducting fluid 

between two insulating infinite parallel porous plates at a distance d  apart, is considered. A 

constant injection velocity,  w0 , is applied at the lower stationary plate and the same constant 

suction velocity, w0 , is applied at the upper plate which is oscillating in its own plane with a 

velocity U
*
 (t

*
) about a non zero constant mean velocity U0. Choose the origin on the lower plate 

lying in x
*
-y

*
 plane and x

*
- axis parallel to the direction of motion of the upper plate. The z

*
-axis 

taken perpendicular to the planes of the plates, is the axis of rotation about which the entire 

system is rotating with a constant angular velocity *
. A transverse uniform magnetic field of 

strength B0 is applied along the axis of rotation. The magnetic Reynolds number of the flow is 

taken to be small enough, so that the induced distortion of the applied magnetic field can be 

neglected. It is also assumed that the external electric field is zero and the electric field due to 

polarization of charges is negligible. Since the plates are infinite in extent, all the physical 

quantities except the pressure, depend only on z
*
 and t

*
. Assuming the velocity components u

*
, v

*
 

and w
*
 in the x

*
, y

* 
 and z

*
  directions respectively, the equations governing the rotating system 

are  

 

0
*

*






z

w
,                                     (1) 

*

*

*

2

0**

*

*2*

*

*
*

*

*

2
2

u
k

u
B

v
z

uP

z

u
w

t

u x 






















,        (2) 

*

*

*

2

0**

*

*2*

*

*
*

*

*

2
2

v
k

v
B

u
z

vP

z

v
w

t

v y 






















        (3) 

where   is the kinematic viscosity, t is the time,  is the density and P
*
 is the modified pressure, 

 is the electrical conductivity of the fluid. The boundary conditions of the problem are  
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0
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,  

where *  is the frequency of oscillations and   is a very small positive constant. 
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 From equation (1), it is clear that w
*
 is a constant, so, we assume that 

0

* ww  . 

Substituting 
0

* ww   and eliminating the modified pressure  gradient, under the usual boundary 

layer approximations i.e. from equation (2), we get 
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Also from equation (3), we get 
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Substituting the above pressure gradients in the  equations (2) and (3), we get 
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In order to transform the equations (5) and (6) into the non-dimensional form, the following non-

dimensional parameters are introduced.  
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the equations (5) & (6) are  )(
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The corresponding transformed boundary conditions are 

 0 vu     at    0       

0,cos1)(  vttUu    at  1                                (9) 
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Equations (7) and (8) can now be combined into a single equation, by introducing a complex 

function  ivuq  , as  
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and the boundary conditions (9) can also be written in complex notations as  0q       at    
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In order to solve equation (10) subject to the boundary conditions (11), we look for a solution of 

the form 
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Substituting equation (12) into equations (10) and (11), and comparing the harmonic and non-

harmonic terms, we get 
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where   il 22
 , )2(2  im   and  )2(2  in . 

The corresponding transformed boundary conditions are 

 0210  qqq    at   0 , 

 1210  qqq    at   1                      (16) 

The solutions of equations (13) to (15) under the boundary conditions (16) are obtained as 
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3. RESULTS AND DISCUSSION: 

 Now for the resultant velocities and the shear stresses of the steady and unsteady flow, we write  

)()()( 000  qiu             (20) 

and  
itit eqeqiu  )()()()( 2111          (21) 

The solution (17) corresponds to the steady part which gives u0 as the primary and v0 as the 

secondary velocity. For steady flow  

 )/(tan, 00
1

0
2
0

2
00 uvvuR   .        (22) 

The resultant velocity or amplitude and the phase difference of the unsteady flow are given by 

 )/(tan, 11
1

1
2
1

2
11 uvvuR            (23) 

In the present study,  the effects of suction and injection on an oscillatory flow of a viscous 

electrically conducting fluid in a rotating horizontal porous channel filled with a porous material 

has been highlighted. 

The most interesting aspects are due to the existence of homogeneous porous matrix coupled 

with the interaction of transverse magnetic field as well as coriolis force contributed by the 

rotating horizontal porous channel. 



               IJESM            Volume 2, Issue 1             ISSN: 2320-0294 
_________________________________________________________         

 A Quarterly Double-Blind Peer Reviewed Refereed Open Access International e-Journal - Included in the International Serial Directories 
Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage, India as well as in Cabell’s Directories of Publishing Opportunities, U.S.A. 

International Journal of Engineering, Science and Mathematics 
 http://www.ijmra.us                                             

 168 

March 
2013 

 

 

Fig. 1 exhibits the resultant velocity R0 bringing out the effects of the permeability 

parameter K, the suction / injection parameter S, the rotation parameter  and the Hartmann 

number M. It is observed that for high value of  ( = 25.0), the velocity increases significantly 

at all points of the flow field (curve V). In all other cases, the thining of boundary layer thickness 

is marked. Either in the absence or presence of porous media, an increase in Hartmann number 

decreases the resultant velocity R0. Thus, it may be concluded that magnetic force has no 

discriminatory role on flow through porous media. Now, in the presence of porous media, an 

increase in rotation parameter increases R0 but the reverse effect is observed in case of suction / 

injection. Comparing the cases of with and without magnetic field (curves III and IV), we 

conclude that the magnetic force enhances the velocity at all points of the flow field. Moreover, 

one interesting point is due to the presence or absence of porous media affecting the flow field at 

 = 0.4 (approximately) where both the curves intersect with each other (curve I and III). The 

flow profile due to the presence of porous media assumes higher value for 0 <  < 0.4. 
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       Fig. 2 shows the effects of pertinent parameters on the phase angle 0. It is seen that the 

phase angle decreases as the Hartmann number increases i.e. both in presence or absence of 

porous media. This corroborates the effect on the resultant velocity. It is to note that the phase 

angle exhibited by the curve I assumes higher value at all points of the channel. The effect due to 

the absence of porous media, phase angle 0 decreases gradually from the stationary plate to the 

oscillating plate in all the cases. A point of intersection occurs at =0.5 between the curves III 

and VI exhibiting the dominating effects of suction / injection parameter and Hartmann number  

with their higher values in curve VI than the lower values exhibited through the curve III. 

Another point of intersection occurs nearly at =0.3, where the curves IV and V intersect. The 

sudden increase in the phase angle is marked near the stationary plate due to higher value of 

rotation parameter, then decreases when >0.3. Further, it is noted that there is always phase 

lead at all points of the channel. 
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Fig. 3 depicts the resultant velocity R1 of the unsteady primary component u1 and secondary 

component v1 for the fluctuating flow. It is observed that in the absence of porous media, the 

Hartmann number M has no significant effect on the resultant velocity but in the presence of the 

porous media, an increase in M leads to an increase in the resultant velocity R1. Further, it is 

interesting to note that an increase in rotation parameter and frequency of oscillation, increases 

R1 but suction velocity affects adversely. One striking feature is that for high rotation ( = 25), 

the unsteady resultant velocity increases significantly. 
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Fig. 4 exhibits the effects on phase angle due to time varying fluctuation velocity. An 

increase in Hartmann number decreases the phase angle irrespective of the presence or absence 

of porous media. Thus it is concluded that Lorentz force is responsible to decrease the phase 

angle with or without porous matrix. Again the curves IV and VI also intersect for >0.3 nearly 

due to high value of  = 25. For larger value of rotation parameter the phase angle initially 

assumes smaller value than that of lower rotation. The curve I shows that the phase angle 

becomes maximum in the absence of both porous media and magnetic field but in the presence 

of magnetic field, the phase angle decreases at any point of the flow field. 

Table 1 : Values of r0  and r0 for different values of S, , , M and K. 

S   M K 
r0  r0  

2 5 5 0 100 2.508748 1.026874 

2 5 5 2 100 2.529451 0.765710 

2 5 5 0 0.1 2.939459 0.491191 

2 5 5 2 0.1 3.299481 0.381462 

2 5 10 2 0.1 3.299481 0.381462 

2 5 5 2 0.1 3.299481 0.381462 

4 5 5 2 0.1 2.648547 0.443713 

4 10 5 2 0.1 3.457132 0.656790 

 

Table 1 presents the numerical values of amplitude and the phase difference of shear 

stress at the stationary plate (=0) for the steady part, which can be obtained as 
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where  
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Here x0  and y0 are the shear stresses at the stationary plate due to the primary and secondary 

velocity component respectively. Presence of Lorentz force (M=2.0) leads to increase the 

amplitude r0  and decrease the phase angle r0 , but the presence of porous matrix affects 
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adversely. No significant change in both r0 and r0  is observed due to an increase in frequency 

parameter ( ), but for high value of rotation both of them increase. Rotation causes higher 

shearing stress and larger phase angle. 

Table 2 : Values of r1  and r1 for different values of S, , , M and K. 

S   M K r1  r1  

2 5 5 0 100 0.000000 1.207359 

2 5 5 2 100 4.344791 0.904230 

2 5 5 0 0.1 4.163930 0.568264 

2 5 5 2 0.1 4.764009 0.433541 

2 5 10 2 0.1 5.379962 0.463543 

2 5 5 2 0.1 5.028723 0.433541 

4 5 5 2 0.1 5.379962 0.509548 

4 10 5 2 0.1 4.274333 0.719925 

4 5 20 2 100 4.1700 -1.16751 

 

 Table 2 presents the amplitude and the phase difference in case of unsteady flow. 

 For the unsteady part of the flow, the amplitude and the phase difference of shear stresses 

at the stationary plate (=0) can be obtained as 
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which gives 

  xyryxr 111
2
1

2
11 /,            (27) 

In the presence or absence of porous media, Hartmann number increases r1 but decreases r1  

significantly. Hence, Lorentz force is responsible for higher amplitude and lower phase angle in 

the presence or absence of porous media but the reverse effect is observed by increasing the 

rotation parameter (). 

 In case of higher frequency of oscillation, both r1 and r1  assume higher values. One 

striking feature of all the entries in case of both steady and unsteady case is that no phase lag is 
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observed but the absence of porous matrix with a higher frequency a phase lag is marked with a 

negative entry. 

 

4. CONCLUSION:  

The above results lead to the following conclusions of physical interest. 

(i) In the lower part of the channel, i.e. near the stationary  plate, porosity of the medium enhances 

the resultant velocity R0 of the flow field but the reverse effect is observed in the upper half i.e. 

(near the oscillating plate). 

(ii) The suction / injection parameter and Hartmann number enhance the phase angle in the layer 

near to the stationary plate but the reverse effect is observed near the oscillating plate.  

(iii)Increasing values of rotation parameter and frequency of oscillation enhance the resultant 

velocity R1 where as the suction / injection parameter is to decrease it. 

(iv) The Lorentz force is responsible to decrease the phase angle with or without the porous matrix. 

This force also increases the amplitude r0  and decreases the phase angle r0 , but the presence 

of porous media affects adversely. 

(v) Rotation parameter possesses higher shearing stress and larger phase angle. 
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